69 lượt xem

Bài viết Cách xác định số nghiệm của một phương trình với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xác định số nghiệm của một phương trình.

Cách xác định số nghiệm của một phương trình lớp 8 (cực hay, có đáp án)

A. Phương pháp giải

– Lưu ý về số nghiệm của một phương trình: Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm, .., vô số nghiệm hoặc có thể không có nghiệm nào. Phương trình không có nghiệm nào được gọi là phương trình vô nghiệm.

– Phương pháp giải:

 Phương trình A(x) = B(x) vô nghiệm ⇔ A(x) ≠ B(x) với ∀ x.

 Phương trình A(x) = B(x) có nghiệm x = x0 ⇔ A(x0) = B(x0) .

 Phương trình A(x) = B(x) có vô số nghiệm ⇔ A(x) = B(x) với ∀ x.

B. Ví dụ minh họa

Ví dụ 1: Chứng tỏ phương trình 2x – 3 = 2(x – 3) vô nghiệm

Lời giải:

Ta có:

2x – 3 = 2(x – 3)

⇔ 2x – 3 = 2x – 6

⇔ 2x – 2x = 3 – 6

⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm

Ví dụ 2: Chứng tỏ phương trình 4(x – 2) – 3x = x – 8 có vô số nghiệm

Lời giải:

Ta có:

Xem thêm  Resso Mod Apk Premium Unlocked Download 2023

4(x – 2) – 3x = x – 8

⇔ 4x – 8 – 3x = x – 8

⇔ x – 8 = x – 8 (thỏa mãn với mọi x)

Vậy phương trình đã cho có vô số nghiệm.

Ví dụ 3: Chứng tỏ phương trình (x – 1)(x + 2)(3 – x) = 0 có nhiều hơn một nghiệm.

Lời giải:

(x – 1)(x + 2)(3 – x) = 0

⇔ x – 1 = 0 hoặc x + 2 = 0 hoặc 3 – x = 0

⇔ x = 1 hoặc x = -2 hoặc x = 3.

có 3 giá trị x = 1, x = -2, x = 3 đều thỏa mãn phương trình.

Vậy phương trình trên có nhiều hơn 1 nghiệm.

C. Bài tập vận dụng

Bài 1: Số nghiệm của phương trình x2 – 4x + 6 = 0 là:

 A. Vô số nghiệm.

 B. 1 nghiệm.

 C. 2 nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: D

Ta có x2 – 4x + 6 = x2 – 4x + 4 + 2 =(x – 2)2 + 2 ≥ 2 với mọi x.

Vậy phương trình x2 – 4x + 6 = 0 vô nghiệm

Bài 2: Phương trình 2(x – 1) = 2x – 2 có số nghiệm là:

 A. một nghiệm.

 B. hai nghiệm.

 C. Vô số nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: C

Ta có VT = 2(x – 1) = 2x – 2 = VP (với mọi x)

Vậy phương trình đã cho có vô số nghiệm.

Bài 3: Phương trình 4(x – 3) + 16 = 4(1 + 4x) có số nghiệm là:

 A. một nghiệm.

 B. hai nghiệm.

 C. Vô số nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: A

Ta có:

4(x – 3) + 16 = 4(1 + 4x)

⇔ 4x – 12 + 16 = 4 + 16x

⇔ 4x + 4 = 16x + 4

⇔ 4x = 16x

⇔ x = 0

Vậy phương trình đã cho có 1 nghiệm x = 0.

Bài 4: Phương trình │x – 2│ = -2 có số nghiệm là:

Xem thêm  Những Cuốn Sách Nuôi Dạy Con Hay Nhất

 A. một nghiệm.

 B. hai nghiệm.

 C. Vô số nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: D

Ta có │x – 2│ ≥ 0 với mọi x.

Vậy phương trình │x – 2│ = – 2 vô nghiệm.

Bài 5: Số nghiệm của phương trình x2 – 3x = 0 là:

 A. Vô số nghiệm.

 B. một nghiệm.

 C. hai nghiệm.

 D. Vô nghiệm.

Lời giải:

Đáp án: C

Ta có x2 – 3x = 0 ⇔ x(x – 3) = 0 ⇔ x = 0 hoặc x = 3

Vậy phương trình x2 – 3x = 0 có hai nghiệm.

Bài 6: Chứng tỏ phương trình 2x + 5 = 4(x – 1) – 2(x – 3) vô nghiệm.

Lời giải:

Ta có: 2x + 5 = 4(x – 1) – 2(x – 3) ⇔ 2x + 5 = 2x + 2 ⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm.

Bài 7: Chứng tỏ phương trình x2 – 8x + 18 = 0 vô nghiệm.

Lời giải:

Ta có x2 – 8x + 18 = x2 – 8x + 16 +2 = (x – 4)2 + 2 ≥ 2 với mọi x

Vậy phương trình x2 – 8x + 18 = 0 vô nghiệm.

Bài 8: Chứng tỏ phương trình (x2 – 1) = 0 có nhiều hơn một nghiệm.

Lời giải:

Ta có: (x2 – 1) = 0 ⇔ (x – 1)(x + 1) = 0 ⇔ x = 1 hoặc x = -1.

Có hai giá trị x = -1, x = 1 đều thỏa mãn phương trình.

Vậy phương trình có nhiều hơn 1 nghiệm.

Bài 9: Chứng tỏ phương trình │x + 1│ = – 3 vô nghiệm.

Lời giải:

ta có │x + 1│ ≥ 0 với mọi x. Vậy phương trình │x + 1│ = -3 vô nghiệm.

Bài 10: Chứng tỏ phương trình (x2 + 1) = -x2 + 6x – 9 vô nghiệm.

Xem thêm  Những Bí Quyết Toán Tiếng Anh Lớp 3 Giúp Con Học Hiệu Quả cùng PRAIM

Lời giải:

Ta có (x2 + 1) = -x2 + 6x – 9 ⇔ x2 + 1 + (x2 – 6x + 9) = 0 ⇔ x2 + (x – 3)2 + 1 = 0

Vì x2 ≥ 0, (x – 3)2 ≥ 0 với mọi x nên x2 + (x – 3)2 + 1 ≥ 1 vơi mọi giá trị của x

Vậy phương trình đã cho vô nghiệm.

Xem thêm các dạng bài tập Toán lớp 8 chọn lọc, có đáp án hay khác:

  • Cách giải phương trình tích cực hay, có đáp án
  • Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án
  • Cách chứng minh hai phương trình tương đương cực hay, có đáp án
  • Cách giải bài toán bằng cách lập phương trình cực hay: Bài toán so sánh, thêm bớt

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

  • Giải bài tập Toán 8
  • Giải sách bài tập Toán 8
  • Top 75 Đề thi Toán 8 có đáp án

Săn SALE shopee Tết:

  • Đồ dùng học tập giá rẻ
  • Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
  • Tsubaki 199k/3 chai
  • L’Oreal mua 1 tặng 3

Chào mừng bạn đến với PRAIM, - nền tảng thông tin, hướng dẫn và kiến thức toàn diện hàng đầu! Chúng tôi cam kết mang đến cho bạn một trải nghiệm sâu sắc và tuyệt vời về kiến thức và cuộc sống. Với Praim, bạn sẽ luôn được cập nhật với những xu hướng, tin tức và kiến thức mới nhất.